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LETTER TO THE EDITOR 

On the relevance of orthogonal ( d  x d )  matrices within 
Nikolskii’s transformation method for ( d  > 1)-dimensional 
Boltzmann equations 

Gunter Dukek 
Department of Mathematical Physics, University of Ulm, D-7900 Ulm, Federal Republic 
of Germany 

Received 23 October 1989 

Abstract. The method of Nikolskii is studied for d-dimensional nonlinear Boltzmann 
equations with momentum and energy conservations holding. Outside forces are taken 
into account, and a class of cross sections obeying a homogeneity condition is assumed. 
Cornille’s ansatz for the Nikolskii transform method is generalised in accordance with the 
microscopic conservation laws. The new ansatz, incorporating a space- and time-dependent 
orthogonal ( d  x d )  matrix, proves to be consistent if the outside force satisfies a compatibil- 
ity condition. The significance of orthogonal matrices depending only on the time coordin- 
ate, is pointed out for linear spatial forces in the context of the average flow velocity. 

In the Nikolskii [l-41 transform method (NM) one seeks solutions of the nonlinear 
Boltzmann equation (BE)  

Lf = J ( L  f) 

f(u, x, t )  = F(  v u ,  x, t ) ,  . r ( t ) )  

L = d , + U - d, + A( U, X, t ) * 3, (1) 

(2) 

in the form 

where the functions 
v =  V ( u , x ,  t )  T = T (  f )  

depending on the time t ,  space coordinate x e R d  and velocity ueRd,  have to be 
determined such that (1) reduces to the spatially uniform equation 

LoF = J (  F, F )  L~ = a,. (4) 
For a given type of collision integral J ( J f ) ,  it is important to know the admissible 
transformations (3) and solutions F (  V, 7) of (4). Then, according to (2), one can build 
up classes of inhomogeneous distributions from homogeneous ones. Usually, the 
transformations (3a)  are chosen in close analogy to the ansatz, V =  yc, known from 
the study of locally Maxwellian distributions with peculiar velocity c = U - U. Such 
transformations (with y, U being functions of x and t )  prove to be sufficient for energy 
dependent distributions F (  Vz, 7) .  However, no solution of the BE (4) need be of that 
particular type, and then the above assumption appears too restrictive. In this letter 
we aim at presenting an extended class of transformations ( 3 a )  for the 

( 5 )  
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with S d  = d a d ,  momentum and energy conservation holding: 

s =  u+w-(u’+w’)=O So = u2 + w 2  - (U’* + w’2) = 0 (6) 

and the cross section U being a homogeneous function of degree e with respect to the 
first argument: 

U (  A 1 0  - w I ,  COS X )  = A ‘a( I U - wJ, COS x ) .  (7) 

The molecular interactions characterised by such a functional relationship (A arbitrary) 
contain the intermolecular forces with inverse power law p [3] as a special case, namely 
for e = -2(d - 1)/( p - 1). The formulae expressing the velocities after impact (U’, w ’ )  
as functions of angle variables x, 8, E and velocities before impact (U, w), as well as 
the details of the d-dimensional solid angle integration may be found elsewhere [3]. 
In the spatially homogeneous B E  (4), it is understood that J ( F ,  F )  is the expression 
written down in (5) with U’, w’, . . . replaced by V, W , .  . . always with 

A = V +  W - ( V ’ +  W ’ ) = O  A o =  V 2 +  W 2 - ( V ’ * +  W ” ) = O .  (8) 

Cornille’s ansatz for the N M  is V = y(x ,  t ) (  U - o0(x, t ) ) .  Clearly, for y non-zero, these 
linear transformations between the velocities V and U constitute a group admitting 
M o ( d )  = 1 + d  (continuous and differentiable) functions of x and t. This group is 
assumed in the N M  even if the B E  is markedly different from (1) as, for instance, the 
B E  of a gas of test particles interacting with a background host medium [4,5]. Here, 
we propose an extended transformation group: 

(9a)  v = Y(X, t)B(x, t)(u - uo(x, t ) )  

&x, t)B(x, t )  = E  

with y ( x ,  t )  # 0, E being the unit matrix, B(x, t )  an orthogonal ( d  x d )  matrix, and 
B(x, t )  its transpose. For that group, admitting M ( d )  = M o ( d ) + f d ( d  - 1) space- and 
time-dependent functions, one can show that (6) and (8) follow from each other. 
Indeed, the simultaneous transformations V = yB( U - uo), W = yB( w - uo), . . . induce 
a non-degenerate linear transformation between {A, Ao} and {S, 6,) 

(10) 

having the property {A = 0, A. = O } e { S  = 0, So = O}. Hence, the extended transforma- 
tion group is in accordance with the requirements of the microscopic conservation 
laws. This observation indicates that (9) is the adequate basis for the N M .  Cornille’s 
ansatz corresponds to the trivial solution of ( 9 b ) ,  B(x, t )  = E. In the N M  based on (9) 
one may choose B(x, t )  = E without loss of generality in any equation depending on 
V2.  This justifies Cornille’s assumption for energy-dependent distributions F (  V 2 ,  T ) ,  

such as the BKW even velocity mode [2,6], but not for other types of distributions F. 
According to this rule it is also clear that the extended group (9) does not enlarge the 
class of inhomogeneous similarity solutions [2,3] of the BE, being generated by the 
B K W  mode. In that respect it would be desirable to know other distributions F, not 
depending on V 2 .  Unfortunately, at present, only for Maxwell particles (i.e. e = -1 
in (7 ) )  and even velocity distributions do we completely know the method for the 
explicit construction of distributions F. 

We intend to discuss now some consequences of (9) within the N M  on both the 
microscopic and macroscopic level of description. We address those problems which 
can be treated without explicit knowledge of F (  V, 7 ) .  

A =  yBS A0 = ?*{ So - 2 6  * YO} 
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A direct consequence of (9) is 

( V  - W )  * ( V ' -  W' )  (U - w )  (U'- w ' )  
:= cos x. - - 

IV-  WIIV'- W'J Iu-wIJu'-w'I 

Equation ( 1  l ) ,  expressing the conservation of the centre-of-mass scattering angle x 
under the above transformations, justifies that the same angle variable x E [0, 7r] can 
be used within both collision integrals J ( F ,  F )  and J ( f ; f ) .  The following conditions 
ensure that the inhomogeneous BE can be reduced to the homogeneous one: 

i J ( F ,  F )  = J ( f ; f )  iLoF = Lf (12% b )  

(a  superimposed dot indicates the usual time derivative). Observing the relation 
between the collision terms 

(13) 

(following from the definition of J ( F ,  F )  together with ( 5 ) ,  (7),  (9), ( 1  1 ) )  and evaluating 
Lf by means of (2), one obtains from (12) 

J ( F ,  J9 = Idet Wx,  t)lly(x, t)l"d'eJ(f,f) 

i(t)ldet B(x, t ) l ( y ( x ,  t ) l ' + d + e  = 1 (dvF) * ( L V )  = 0.  (14a, b )  

The determining equation for T (  t ) ,  equation ( 1 4 4 ,  requires y to be space independent, 
but does not imply restrictions upon the orthogonal matrices, since det B(x, t )  = k l .  
Hence, for y ( x ,  t )  = yo( t ) ,  the admissible transformations (3b)  are 

A particular solution of (14b), not depending on the type of distribution F (  V, T ) ,  is 
LV = 0.  That condition can be replaced by LV2 = 0 if the distributions F depend only 
on the energy. A discussion of the differential equation LV2 = 0 may be found elsewhere 
[3]. We concentrate on LV = 0 which can be rewritten as 

(16) 
1 D 

A(u ,x ,  t ) = - - & x ,  t ) ~ f I ~ o ( t ) B ( x ,  t ) [u - -o (x ,  t ) I )  
Y o ( ? )  

where D/Dt =a,+u.a,. 
Equation (16) can be viewed in two different ways: 
( i )  for a given choice of yo, 6, uo, it defines the compatible outside force A ;  
(ii) for A being a prescribed function, it represents a partial differential equation 

(nonlinear in B) for the unknown quantities yo, B, uo. 
It is instructive to discuss (16) in connection with the relations between the 

homogeneous and inhomogeneous macroscopic quantities (number density and mean 
velocity of molecules, stress tensor and energy flux vector). Here, we confine our 
considerations to the relation between U := ( V )  and U := (U) = uf d u / j  f du, obtained 
(formally) from ( 9 a )  upon replacing U, V by U,  U. We bring this relation into the 
form 

with U = VF d V / j  F d V being constant as a consequence of momentum conservation. 
When A =0, equation (16) admits the solution 

74x9 t )  = B(x, t )  = 8, uo(x, t )  = x / t  (18) 
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with B, a constant ( d  x d )  matrix. Here, the integration constants are assumed such 
that the original Nikolskii variable, V = t (  U - x / t ) ,  is obtained for the trivial choice 
6, = E. When inserting (18) into (17), it follows that the possible motions are a 
superposition of radial and translational motion. The translational motion disappears 
for even velocity distributions F( V 2 ,  7). For this particular class of distributions, 
Cornille proved that rotational motion can occur in the presence of outside forces 
depending linearly on x. His proof [3] is based on the assumption B(x, t )  = E and 
relies on the differential equation L V 2 = 0 .  In the context of LV=O,  the proof is as 
follows. We write down a generalisation of (18) 

Y(X, t )  = YO(t )  B(x, t )  = Bo(t) u~(x ,  1 )  = U,( t )  + M( t ) x .  (19) 

The contributions on the RHS of (16) which are bilinear in U, vanish for any space 
independent orthogonal matrix Bo( t ) .  The remaining velocity dependent terms (linear 
in U) vanish for the particular choice 

M,,= Y;lyo~+n n := boBo (20) 
with n representing a time dependent antisymmetric matrix fi+n =O. Under the 
additional condition (20) one finds the relations 

Ao(4  t )  = [a, +Mo(t)luo(x, t )  = [a, + (uo(x, 1 )  - a,)luo(x, 1 )  

U = U, + y;lB0u+ Y;'yox+Rx. 
(21) 

(22) 

In contrast to the derivation in [3], these results hold for any solution F (  V, 7) of the 
BE (4). In d = 3 dimensions the last equation admits an elementary interpretation: 
Recalling n x  = w x x, it follows from (22) that the possible motions are a superposition 
of translational motion, radial motion and rotation with vector angular velocity o 
(solid body rotation of tke gas). 

Finally, by virtue of Bo+nbo=O, one is allowed to substitute in the last term of 
(21): uo+ U. In that form (21) agrees with the (reduced) Euler equation, obtained from 
the BE by the method of summational invariants. 
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